3.508 \(\int \frac{1}{x^2 \sqrt{1+x} \sqrt{1-x+x^2}} \, dx\)

Optimal. Leaf size=282 \[ \frac{\sqrt{2} \sqrt{x+1} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{\sqrt [4]{3} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^2-x+1}}-\frac{\sqrt [4]{3} \sqrt{2-\sqrt{3}} \sqrt{x+1} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} E\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{2 \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^2-x+1}}-\frac{x^3+1}{x \sqrt{x+1} \sqrt{x^2-x+1}}+\frac{x^3+1}{\sqrt{x+1} \left (x+\sqrt{3}+1\right ) \sqrt{x^2-x+1}} \]

[Out]

-((1 + x^3)/(x*Sqrt[1 + x]*Sqrt[1 - x + x^2])) + (1 + x^3)/(Sqrt[1 + x]*(1 + Sqr
t[3] + x)*Sqrt[1 - x + x^2]) - (3^(1/4)*Sqrt[2 - Sqrt[3]]*Sqrt[1 + x]*Sqrt[(1 -
x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticE[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] +
x)], -7 - 4*Sqrt[3]])/(2*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 - x + x^2]) +
(Sqrt[2]*Sqrt[1 + x]*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(1
 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(3^(1/4)*Sqrt[(1 + x)/(1 +
Sqrt[3] + x)^2]*Sqrt[1 - x + x^2])

_______________________________________________________________________________________

Rubi [A]  time = 0.227452, antiderivative size = 282, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217 \[ \frac{\sqrt{2} \sqrt{x+1} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{\sqrt [4]{3} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^2-x+1}}-\frac{\sqrt [4]{3} \sqrt{2-\sqrt{3}} \sqrt{x+1} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} E\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{2 \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^2-x+1}}-\frac{x^3+1}{x \sqrt{x+1} \sqrt{x^2-x+1}}+\frac{x^3+1}{\sqrt{x+1} \left (x+\sqrt{3}+1\right ) \sqrt{x^2-x+1}} \]

Antiderivative was successfully verified.

[In]  Int[1/(x^2*Sqrt[1 + x]*Sqrt[1 - x + x^2]),x]

[Out]

-((1 + x^3)/(x*Sqrt[1 + x]*Sqrt[1 - x + x^2])) + (1 + x^3)/(Sqrt[1 + x]*(1 + Sqr
t[3] + x)*Sqrt[1 - x + x^2]) - (3^(1/4)*Sqrt[2 - Sqrt[3]]*Sqrt[1 + x]*Sqrt[(1 -
x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticE[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] +
x)], -7 - 4*Sqrt[3]])/(2*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 - x + x^2]) +
(Sqrt[2]*Sqrt[1 + x]*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(1
 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(3^(1/4)*Sqrt[(1 + x)/(1 +
Sqrt[3] + x)^2]*Sqrt[1 - x + x^2])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 18.1912, size = 248, normalized size = 0.88 \[ \frac{\sqrt{x + 1} \sqrt{x^{2} - x + 1}}{x + 1 + \sqrt{3}} - \frac{\sqrt [4]{3} \sqrt{\frac{x^{2} - x + 1}{\left (x + 1 + \sqrt{3}\right )^{2}}} \sqrt{- \sqrt{3} + 2} \left (x + 1\right )^{\frac{3}{2}} \sqrt{x^{2} - x + 1} E\left (\operatorname{asin}{\left (\frac{x - \sqrt{3} + 1}{x + 1 + \sqrt{3}} \right )}\middle | -7 - 4 \sqrt{3}\right )}{2 \sqrt{\frac{x + 1}{\left (x + 1 + \sqrt{3}\right )^{2}}} \left (x^{3} + 1\right )} + \frac{\sqrt{2} \cdot 3^{\frac{3}{4}} \sqrt{\frac{x^{2} - x + 1}{\left (x + 1 + \sqrt{3}\right )^{2}}} \left (x + 1\right )^{\frac{3}{2}} \sqrt{x^{2} - x + 1} F\left (\operatorname{asin}{\left (\frac{x - \sqrt{3} + 1}{x + 1 + \sqrt{3}} \right )}\middle | -7 - 4 \sqrt{3}\right )}{3 \sqrt{\frac{x + 1}{\left (x + 1 + \sqrt{3}\right )^{2}}} \left (x^{3} + 1\right )} - \frac{\sqrt{x + 1} \sqrt{x^{2} - x + 1}}{x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(1/x**2/(1+x)**(1/2)/(x**2-x+1)**(1/2),x)

[Out]

sqrt(x + 1)*sqrt(x**2 - x + 1)/(x + 1 + sqrt(3)) - 3**(1/4)*sqrt((x**2 - x + 1)/
(x + 1 + sqrt(3))**2)*sqrt(-sqrt(3) + 2)*(x + 1)**(3/2)*sqrt(x**2 - x + 1)*ellip
tic_e(asin((x - sqrt(3) + 1)/(x + 1 + sqrt(3))), -7 - 4*sqrt(3))/(2*sqrt((x + 1)
/(x + 1 + sqrt(3))**2)*(x**3 + 1)) + sqrt(2)*3**(3/4)*sqrt((x**2 - x + 1)/(x + 1
 + sqrt(3))**2)*(x + 1)**(3/2)*sqrt(x**2 - x + 1)*elliptic_f(asin((x - sqrt(3) +
 1)/(x + 1 + sqrt(3))), -7 - 4*sqrt(3))/(3*sqrt((x + 1)/(x + 1 + sqrt(3))**2)*(x
**3 + 1)) - sqrt(x + 1)*sqrt(x**2 - x + 1)/x

_______________________________________________________________________________________

Mathematica [C]  time = 1.14972, size = 400, normalized size = 1.42 \[ -\frac{\sqrt{x+1} \sqrt{x^2-x+1}}{x}+\frac{(x+1)^{3/2} \left (\frac{12 \sqrt{-\frac{i}{\sqrt{3}+3 i}} \left (x^2-x+1\right )}{(x+1)^2}+\frac{i \sqrt{2} \left (\sqrt{3}+3 i\right ) \sqrt{\frac{-\frac{6 i}{x+1}+\sqrt{3}+3 i}{\sqrt{3}+3 i}} \sqrt{\frac{\frac{6 i}{x+1}+\sqrt{3}-3 i}{\sqrt{3}-3 i}} F\left (i \sinh ^{-1}\left (\frac{\sqrt{-\frac{6 i}{3 i+\sqrt{3}}}}{\sqrt{x+1}}\right )|\frac{3 i+\sqrt{3}}{3 i-\sqrt{3}}\right )}{\sqrt{x+1}}+\frac{3 \sqrt{2} \left (1-i \sqrt{3}\right ) \sqrt{\frac{-\frac{6 i}{x+1}+\sqrt{3}+3 i}{\sqrt{3}+3 i}} \sqrt{\frac{\frac{6 i}{x+1}+\sqrt{3}-3 i}{\sqrt{3}-3 i}} E\left (i \sinh ^{-1}\left (\frac{\sqrt{-\frac{6 i}{3 i+\sqrt{3}}}}{\sqrt{x+1}}\right )|\frac{3 i+\sqrt{3}}{3 i-\sqrt{3}}\right )}{\sqrt{x+1}}\right )}{12 \sqrt{-\frac{i}{\sqrt{3}+3 i}} \sqrt{x^2-x+1}} \]

Antiderivative was successfully verified.

[In]  Integrate[1/(x^2*Sqrt[1 + x]*Sqrt[1 - x + x^2]),x]

[Out]

-((Sqrt[1 + x]*Sqrt[1 - x + x^2])/x) + ((1 + x)^(3/2)*((12*Sqrt[(-I)/(3*I + Sqrt
[3])]*(1 - x + x^2))/(1 + x)^2 + (3*Sqrt[2]*(1 - I*Sqrt[3])*Sqrt[(3*I + Sqrt[3]
- (6*I)/(1 + x))/(3*I + Sqrt[3])]*Sqrt[(-3*I + Sqrt[3] + (6*I)/(1 + x))/(-3*I +
Sqrt[3])]*EllipticE[I*ArcSinh[Sqrt[(-6*I)/(3*I + Sqrt[3])]/Sqrt[1 + x]], (3*I +
Sqrt[3])/(3*I - Sqrt[3])])/Sqrt[1 + x] + (I*Sqrt[2]*(3*I + Sqrt[3])*Sqrt[(3*I +
Sqrt[3] - (6*I)/(1 + x))/(3*I + Sqrt[3])]*Sqrt[(-3*I + Sqrt[3] + (6*I)/(1 + x))/
(-3*I + Sqrt[3])]*EllipticF[I*ArcSinh[Sqrt[(-6*I)/(3*I + Sqrt[3])]/Sqrt[1 + x]],
 (3*I + Sqrt[3])/(3*I - Sqrt[3])])/Sqrt[1 + x]))/(12*Sqrt[(-I)/(3*I + Sqrt[3])]*
Sqrt[1 - x + x^2])

_______________________________________________________________________________________

Maple [A]  time = 0.025, size = 363, normalized size = 1.3 \[{\frac{1}{2\,x \left ({x}^{3}+1 \right ) }\sqrt{1+x}\sqrt{{x}^{2}-x+1} \left ( i\sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}}\sqrt{{\frac{i\sqrt{3}-2\,x+1}{i\sqrt{3}+3}}}\sqrt{{\frac{i\sqrt{3}+2\,x-1}{-3+i\sqrt{3}}}}{\it EllipticF} \left ( \sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}},\sqrt{-{\frac{-3+i\sqrt{3}}{i\sqrt{3}+3}}} \right ) \sqrt{3}x+3\,\sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}}\sqrt{{\frac{i\sqrt{3}-2\,x+1}{i\sqrt{3}+3}}}\sqrt{{\frac{i\sqrt{3}+2\,x-1}{-3+i\sqrt{3}}}}{\it EllipticF} \left ( \sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}},\sqrt{-{\frac{-3+i\sqrt{3}}{i\sqrt{3}+3}}} \right ) x-6\,\sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}}\sqrt{{\frac{i\sqrt{3}-2\,x+1}{i\sqrt{3}+3}}}\sqrt{{\frac{i\sqrt{3}+2\,x-1}{-3+i\sqrt{3}}}}{\it EllipticE} \left ( \sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}},\sqrt{-{\frac{-3+i\sqrt{3}}{i\sqrt{3}+3}}} \right ) x-2\,{x}^{3}-2 \right ) } \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(1/x^2/(1+x)^(1/2)/(x^2-x+1)^(1/2),x)

[Out]

1/2*(1+x)^(1/2)*(x^2-x+1)^(1/2)*(I*(-2*(1+x)/(-3+I*3^(1/2)))^(1/2)*((I*3^(1/2)-2
*x+1)/(I*3^(1/2)+3))^(1/2)*((I*3^(1/2)+2*x-1)/(-3+I*3^(1/2)))^(1/2)*EllipticF((-
2*(1+x)/(-3+I*3^(1/2)))^(1/2),(-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))*3^(1/2)*x+3
*(-2*(1+x)/(-3+I*3^(1/2)))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((I*3^(
1/2)+2*x-1)/(-3+I*3^(1/2)))^(1/2)*EllipticF((-2*(1+x)/(-3+I*3^(1/2)))^(1/2),(-(-
3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))*x-6*(-2*(1+x)/(-3+I*3^(1/2)))^(1/2)*((I*3^(1/
2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((I*3^(1/2)+2*x-1)/(-3+I*3^(1/2)))^(1/2)*Elliptic
E((-2*(1+x)/(-3+I*3^(1/2)))^(1/2),(-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))*x-2*x^3
-2)/x/(x^3+1)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{1}{\sqrt{x^{2} - x + 1} \sqrt{x + 1} x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/(sqrt(x^2 - x + 1)*sqrt(x + 1)*x^2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(x^2 - x + 1)*sqrt(x + 1)*x^2), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{1}{\sqrt{x^{2} - x + 1} \sqrt{x + 1} x^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/(sqrt(x^2 - x + 1)*sqrt(x + 1)*x^2),x, algorithm="fricas")

[Out]

integral(1/(sqrt(x^2 - x + 1)*sqrt(x + 1)*x^2), x)

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{1}{x^{2} \sqrt{x + 1} \sqrt{x^{2} - x + 1}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/x**2/(1+x)**(1/2)/(x**2-x+1)**(1/2),x)

[Out]

Integral(1/(x**2*sqrt(x + 1)*sqrt(x**2 - x + 1)), x)

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{1}{\sqrt{x^{2} - x + 1} \sqrt{x + 1} x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/(sqrt(x^2 - x + 1)*sqrt(x + 1)*x^2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(x^2 - x + 1)*sqrt(x + 1)*x^2), x)